数据挖掘原理(第4版)

数据挖掘原理(第4版)
作者: (英)麦克斯·布拉默|责编:王军|译者:李晓峰//逄金辉
出版社: 清华大学
原售价: 118.00
折扣价: 94.40
折扣购买: 数据挖掘原理(第4版)
ISBN: 9787302596493

作者简介

麦克斯·布拉默是英国朴次茅斯大学信息技术系荣誉教授、IFIP副主席、英国计算机学会AI专家组主席。 自从 “数据挖掘”“数据库中的知识发现”“大数据”和“预测分析”等技术兴起以来,Max积极参与了多个数据挖掘项目,尤其是与数据自动分类相关的项目。Max发表了大量技术文章,曾撰写Research and Development in Intelligent Systems等著作。Max具有多年的本科和研究生教学经验。

内容简介

"《数据挖掘原理(第4版)》的重点是介绍基本技术,而不是展示当今最新的数据挖掘技术。一旦掌握了基本技术,就可通过多种渠道了解该领域的最新进展。本书共23章,分别介绍了概述、用于挖掘的数据、朴素贝叶斯和最近邻算法、使用决策树进行分类、决策树归纳、估计分类器的预测精度、连续属性、避免决策树的过度拟合、关于熵的更多信息、归纳分类的模块化规则、度量分类器的性能、处理大量数据、集成分类、比较分类器、关联规则挖掘、聚类、文本挖掘、分类流数据、神经网络。 《数据挖掘原理(第4版)》涉及大量数据集、属性和值,也涉及不少数学公式,字母繁多,格式复杂。为便于检查对所学知识的掌握情况,每章都包含自我评估练习。所以本书末尾还有5个附录,分别介绍了基本数学知识、数据集、更多信息来源、词汇表和符号、自我评估练习题答案。 《数据挖掘原理(第4版)》面向计算机科学、商业研究、市场营销、人工智能、生物信息学和法医学专业的学生,可用作本科生或硕士研究生的入门教材。同时,对于那些希望进-一步提高自身能力的技术或管理人员来说,本书也是极佳的自学书籍。 "