生物群智计算与机器学习

生物群智计算与机器学习
作者: 朱云龙//陈瀚宁//申海//张浩|责编:王一玲//李晔
出版社: 清华大学
原售价: 79.00
折扣价: 56.09
折扣购买: 生物群智计算与机器学习
ISBN: 9787302548584

作者简介

\"朱云龙 (博士,博士生导师,教授) 东莞理工学院特聘教授,国务院政府特殊津贴获得者,中国科学院首批特聘研究员、中科院网络化控制系统重点实验室主任、国家科技部制造业信息化科技工程总体专家组成员、中国工程院:中国人工智能2.0规划专家委员会委员、中华国际科学交流基金会第一届专家委员会委员、国家科技奖励评审专家,《信息与控制》杂志编委等。 近二十年来一直从事网络化协同制造、智能工厂/工业4.0、工业物联网与生物群智计算等领域的基础理论与工程应用研究。作为课题负责人先后承担国家自然科学面上基金、国家自然科学重点基金和重大基金5项,国家863/CIMS应用基础研究和重点项目6项,国家科技支撑计划1项,承担的企业合作项目10余项。近10年发表学术论文200余篇,其中被EI收录近130篇,SCI收录50余篇,出版学术专著3本。获辽宁省科技成果一等奖1项,辽宁省自然科学二等奖1项,辽宁省科技进步二等奖1项,沈阳市科技进步二等奖1项,中科院院地合作先进个人二等奖1项、沈阳市先进科技工作者和辽宁省“百千万人才工程”——“百人计划”获得者。\"

内容简介

\"作为人工智能领域的一个重要分支,生物群智计算与机器学习已经引起越来越多国内外研究者的关注,成为前沿性的热点研究领域,在理论和应用方面都取得了很多突破性研究进展。本书综合分析了人工智能的发展历程以及与生物群智计算、机器学习等之间的关系,给出了生物群智计算的统一框架模型,涵盖了从简单到复杂的基于个体自适应、群体分工协作、多群体协同进化等生物现象的几类新型生物群智计算模式,所有这些无疑体现了生物群智计算最基础、最核心的理论与方法。同时,有针对性地介绍了深度学习、强化学习、迁移学习和生成式对抗网络等机器学习方法,希望读者在掌握生物群智计算的同时,能够有机地融合这些以大数据为主要特征的机器学习方法,构建更为激动人心的新型算法。 \"