动手学深度学习(PyTorch版)

动手学深度学习(PyTorch版)
作者: 阿斯顿·张(Aston Zhang)
出版社: 人民邮电
原售价: 109.80
折扣价: 76.90
折扣购买: 动手学深度学习(PyTorch版)
ISBN: 9787115600820

作者简介

作者简介: 阿斯顿·张(Aston Zhang),亚马逊资深科学家,美国伊利诺伊大学香槟分校计算机科学博士,统计学和计算机科学双硕士。他专注于机器学习和自然语言处理的研究,荣获深度学习国际顶级学术会议ICLR杰出论文奖、ACM UbiComp杰出论文奖以及ACM SenSys最佳论文奖提名。他担任过EMNLP领域主席和AAAI资深程序委员。 扎卡里·C. 立顿(Zachary C. Lipton),美国卡内基梅隆大学机器学习和运筹学助理教授,并在海因茨公共政策学院以及软件和社会系统系担任礼节性任命。他领导着近似正确机器智能(ACMI)实验室,研究涉及核心机器学习方法、其社会影响以及包括临床医学和自然语言处理在内的各种应用领域。他目前的研究重点包括处理各种因果结构下分布变化的稳健和自适应算法、超越预测为决策提供信息(包括应对已部署模型的战略响应)、医学诊断和预后预测、算法公平性和可解释性的基础。他是“Approximately Correct”博客的创始人,也是讽刺性漫画“Superheroes of Deep Learning”的合著者。 李沐(Mu Li),亚马逊资深首席科学家(Senior Principal Scientist),美国加利福尼亚大学伯克利分校、斯坦福大学客座助理教授,美国卡内基梅隆大学计算机系博士。他曾任机器学习创业公司Marianas Labs的CTO和百度深度学习研究院的主任研发架构师。他专注于机器学习系统和机器学习算法的研究。他在理论与应用、机器学习与操作系统等多个领域的顶级学术会议上发表过论文,被引用上万次。 亚历山大·J. 斯莫拉(Alexander J. Smola),亚马逊副总裁/杰出科学家,德国柏林工业大学计算机科学博士。他曾在澳大利亚国立大学、美国加利福尼亚大学伯克利分校和卡内基梅隆大学任教。他发表过超过300篇学术论文,并著有5本书,其论文及书被引用超过15万次。他的研究兴趣包括深度学习、贝叶斯非参数、核方法、统计建模和可扩展算法。 译者简介: 何孝霆(Xiaoting He),亚马逊应用科学家,中国科学院软件工程硕士。他专注于对深度学习的研究,特别是自然语言处理的应用(包括语言模型、AIOps、OCR),相关工作落地于众多企业。他担任过ACL、EMNLP、NAACL、EACL等学术会议的程序委员或审稿人。 瑞潮儿·胡(Rachel Hu),亚马逊应用科学家,美国加利福尼亚大学伯克利分校统计学硕士,加拿大滑铁卢大学数学学士。她致力于将机器学习应用于现实世界的产品。她也是亚马逊人工智能团队的讲师,教授自然语言处理、计算机视觉和机器学习商业应用等课程。她已向累计1000余名亚马逊工程师教授机器学习,其公开课程视频在YouTube和哔哩哔哩上广受好评。

内容简介

·深度学习领域重磅作品《动手学深度学习》重磅推出PyTorch版本; ·李沐、阿斯顿·张等大咖作者强强联合,精心编撰; ·全球400多所大学采用的教科书,提供视频课程、教学PPT、习题,方便教师授课与学生自学; ·能运行、可讨论的深度学习入门书,可在线运行源码并与作译者实时讨论。