人工智能算法(卷3深度学习和神经网络)

人工智能算法(卷3深度学习和神经网络)
作者: (美)杰弗瑞·希顿|责编:陈冀康|译者:王海鹏
出版社: 人民邮电
原售价: 89.90
折扣价: 62.10
折扣购买: 人工智能算法(卷3深度学习和神经网络)
ISBN: 9787115552310

作者简介

[美] 杰弗瑞·希顿(Jeffery Heaton)他既是一位活跃的技术博主、开源贡献者,也是十多本图书的作者。他的专业领域包括数据科学、预测建模、数据挖掘、大数据、商务智能和人工智能等。他拥有华盛顿大学信息管理学硕士学位,是IEEE的高级会员、Sun认证Java程序员、开源机器学习框架Encog的首席开发人员。

内容简介

1.本卷研究了当前的神经网络技术,包括ReLU 激活、随机梯度下降、交叉熵、正则化、Dropout 和可视化; 2.丰富的示例代码和在线资源,方便动手实践与拓展学习; 3.提供在线实验环境; 4.全彩印刷; 5.《人工智能算法 卷3 深度学习和神经网络》是系列图书第3本,卷1《人工智能算法 卷1 基础算法》、卷2《人工智能算法 卷2 受大自然启发的算法》已在人民邮电出版社出版;。 自人工智能的早期阶段以来,神经网络就扮演着至关重要的角色。现在,令人兴奋的新技术,例如深度学习和卷积,正在将神经网络带向一个全新的方向。本书结合各种现实世界任务中的神经网络应用,例如图像识别和数据科学,介绍了当前的神经网络技术,包括ReLU激活、随机梯度下降、交叉熵、正则化、Dropout和可视化。 本书的目标读者是那些对人工智能感兴趣,但苦于没有良好的数学基础的人。读者只需要对大学代数课程有基本了解即可。本书为读者提供配套的示例程序代码,目前已有Java、C#和Python版本。 推荐阅读: 《人工智能算法(卷1):基础算法》ISBN:9787115523402 《人工智能算法(卷2):受大自然启发的算法》ISBN:9787115544315