
出版社: 电子工业
原售价: 118.00
折扣价: 81.50
折扣购买: 隐私计算
ISBN: 9787121426414
陈 凯香港科技大学计算机科学与工程系副教授、博导、研究生部主任,智能网络与系统实验室(iSING Lab)主任,香港科大-微信人工智能技术联合实验室(WHAT Lab)主任,香港人工智能与机器人学会(HKSAIR)执行副理事长,香港主题研究计划(Theme-based Reseach Scheme)首席科学家。主要研究方向包括数据中心网络、云计算、大数据和人工智能底层系统和基础架构。担任ACM SIGCOMM、USENIX NSDI、IEEE INFOCOM、IEEE/ACM Transactions on Networking、Big Data、Cloud Computing等国际顶尖会议和期刊的程序委员会委员和编委,亚太网络研讨会(APNet)的发起人和执行委员会主席。陈凯本科和硕士毕业于中国科学技术大学,获得中国科学院院长奖,博士毕业于美国西北大学。杨 强加拿大工程院及加拿大皇家科学院两院院士,微众银行首席人工智能官,香港科技大学讲席教授,AAAI 2021大会主席,中国人工智能学会(CAAI)荣誉副理事长,香港人工智能与机器人学会(HKSAIR)理事长以及智能投研技术联盟(ITL)主席。他是AAAI/ACM/CAAI/IEEE/IAPR/AAAS Fellow,也是IEEE Transactions on Big Data和ACM Transactions on Intelligent Systems and Technology创始主编,以及多个国际人工智能和数据挖掘领域杂志编委。曾获2019年度“吴文俊人工智能科学技术奖”杰出贡献奖,2017年ACM SIGKDD杰出服务奖。杨强毕业于北京大学,于1989年在马里兰大学获得计算机博士学位,之后在加拿大滑铁卢大学和Simon Fraser大学任教,他的研究领域包括人工智能、数据挖掘和机器学习等。他曾任华为诺亚方舟实验室主任,第四范式公司联合创始人,香港科技大学计算机与工程系系主任以及国际人工智能联合会(IJCAI)理事会主席。领衔全球迁移学习和联邦学习研究及应用,最近的著作有《迁移学习》、《联邦学习》和《联邦学习实战》等。
推荐序 杨强教授嘱我为其和陈凯教授的新作《隐私计算》作序,深感荣幸,欣然允之。杨教授是大数据和人工智能领域的国际知名学者,特别是近年来作为“联邦学习”理念的倡导者和先行者之一,做出了很多杰出的工作。我曾拜读过其著作 《联邦学习》并撰写了一段推荐语。著作中,杨教授既呈现了深厚的学术造诣,又展示了高超的文字驾驭能力,深入浅出,分享了他及其团队在产业界一线实践的宝贵经验,使著作兼具很强的可读性、知识性和实用性,给我留下了深刻的印象。 我自己主要从事软件技术领域的研究工作,在安全和隐私保护领域实属外行。就大数据而言,我和团队主要致力于面向大数据的软件技术研究,专注于系统软件和工具层面。近几年,我自己也比较关注数据治理体系建设方面的工作,有一些心得。拜读《隐私计算》,我更多的是站在学习者的视角,收获颇丰。这里,我仅从大数据治理的维度,分享若干认识和思考。 当今时代,人类数字文明正在拉开帷幕,数字化转型已成为时代大势。在我国,建设数字中国、发展数字经济、实施国家大数据战略已成为国家的战略选择。“大数据”正是这个时代呈现的独特现象!数据作为基础性战略资源的地位日益凸显,已形成充分共识;数据作为核心生产要素的角色基本确立,正引发各界关注和研究。我理解,在强化数据安全和保护个人隐私的前提下,追求数据价值的最大化释放是这个时代应有之义。数据价值的充分释放源于多源(元)数据的碰撞融合,基于数据的开放、共享和流通,赖于健康的大数据产业生态。然而,要发挥大数据的作用、做大做强大数据产业、更好地实施国家大数据战略,大数据治理体系的建设就成为重要保障。针对大数据治理的研究和实践现状,我提出了一个治理 体系的“434 模型”,即在国家、行业、组织等三个层次,针对数据资产地位确立、管理体制机制、数据共享开放、安全与隐私保护等四方面内容,基于制度法规、标准规范、应用实践、支撑技术等四类方法手段,构建大数据治理体系?。就我的认识,《隐私计算》一书正是针对其中的一项非常重要内容的技术手段的探索! 隐私计算是近年来发展迅速,同时关注度和活跃度很高的一个研究领域。隐私计算以密码学为理论基础,融合统计学、人工智能、大数据、计算机系统,以及法律、伦理学等多个学科,形成了一系列理论和技术。隐私计算的目的是有效挖掘数据中的价值,同时不侵害数据本身的安全和隐私,实现“数据可用不可见”,从而支持数据的可信共享和流通。从这个意义上看,隐私计算将会是大数据治理体系中非常有前景的核心支撑技术之一。 本书呈献给读者的是兼顾广度和深度的关于隐私计算的系统性介绍:从广度上看,涵盖了隐私计算的基础理论和关键技术,如秘密共享、同态加密、不经意传输、混淆电路、差分隐私、联邦学习和可信执行环境等,介绍了多个知名的隐私计算平台,并辅以大量产业界的应用案例;从深度上看,本书对现有隐私计算技术及其在应用中存在的问题进行了深入分析,并分享了解决这些问题的思路。特别地,本书从不同应用案例的特点出发,分析了相关技术的适用范围和场景,方便读者理解这些技术各自的优点和局限性,对实践者而言也具有很高的参考价值。我非常高兴地看到,这本书兼具理论价值和实用价值,是隐私计算领域的一部优秀著作。可喜可贺! 本书可作为计算机科学、大数据和人工智能等相关专业的学生,以及对隐私计算感兴趣的相关从业人员的入门参考书,也适合相关方向的研究人员,以及在工业界进行程序开发且有隐私保护需求的工程人员阅读。 相信本书能为推动我国大数据和人工智能领域人才培养、产业发展和生态建设做出积极贡献。 是为序。 梅宏 辛丑年孟冬于北京 作者权威。香港科技大学陈凯教授,加拿大工程院及加拿大皇家科学院两院院士、微众银行首席人工智能官杨强教授,联合撰写 专家力荐。中国科学院院士梅宏倾情作序,中国工程院院士高文,中国工程院外籍院士、加拿大皇家科学院院士罗智泉,创新工场董事长兼CEO李开复联袂推荐。 系统全面。系统阐述隐私计算技术,4大发展阶段,5大应用平台,9大落地实践案例,全新法律法规解读 案例丰富。从不同应用案例的特点出发,分析了相关技术的适用范围和场景,方便读者理解技术的优点和局限性,对实践者具有很高的参考价值。 印刷精良。本书采用全彩印刷,精致排版设计,提供上乘阅读体验。