实用MATLAB深度学习(基于项目的方法)/电子信息前沿技术丛书
作者简介
\"作者简介: Michael Paluszek,普林斯顿卫星系统公司(PSS)总裁,获麻省理工学院电气工程学士学位和航空航天学的硕士学位以及工程师学位。PSS公司主要提供航空航天咨询服务,先后基于MATLAB 开发IndoStar-1 地球同步通信卫星的控制系统,推出首个商用 MATLAB 工具箱(即航天器控制工具箱),为飞机、潜艇、机器人和核聚变推进系统开发工具箱和软件包,拥有广泛的产品线。曾任通用电气(GE)工程师,基于MATLAB 进行控制设计,设计Global Geospace Science Polar 设计平台控制系统,领导设计GPS IIR姿态控制系统、Inmarsat-3 姿态控制系统和 Mars Observer delta-V 控制系统。曾研究 DMSP 气象卫星的姿态确定系统;发射超过 12 次通信卫星,其中包括 GSTAR III 回收。在 Draper实验室从事航天飞机、空间站和潜艇导航的工作,包括设计基于控制力矩陀螺的姿态控制系统。发表多篇论文,拥有十多项美国专利。著有《MATLAB 方法》《MATLAB 机器学习》《MATLAB 机器学习方法:一种问题解决方案》等多部图书。 Stephanie Thomas,PSS公司副总裁,获麻省理工学院航空航天学学士学位和硕士学位。近20年来,一直将MATLAB用于航空航天的分析,开发了许多软件工具,包括用于航天器控制工具箱的 SolarSail Module、用于空军的近距离卫星操作工具箱、用于Prisma 卫星任务的碰撞监测 Simulink 模块,以及MATLAB 和Java 车辆分析工具。提出用于空间状况评估的新方法,比如在 MATLAB 和 C++中实现任何两颗卫星之间的一般会合问题的数字方法。为 PSS 的航天器姿态和轨道控制教科书做出贡献,包括撰写航天器控制工具箱的使用说明以及许多软件用户指南。为澳大利亚、加拿大、巴西和泰国等不同国家的工程师进行 SCT 培训,并为NASA、空军和欧洲航天局提供 MATLAB 咨询。著有《MATLAB 方法》《MATLAB 机器学习》《MATLAB 机器学习方法:一种问题解决方案》等多部图书。2016 年被选为“融合型冥王星和着陆器”项目的 NASA NIAC 研究员。 译者简介: 罗俊海,电子科技大学副教授,博士(后),硕士生导师。主持过国家自然科学基金、四川省科技厅基金、总装预研基金和中央高校基本科研业务等15个项目,参与制订标准6项,发表文章60余篇,其中SCI检索50余篇,总引用1500余次。申请和授权发明专利共30余项,获得四川省科技进步奖二等和三等各1项。出版《多源数据融合和传感器管理》《物联网系统开发及应用实战》《使用HTML和CSS开发WEB网站》等5部教材和专著,目前主要研究方向为智能计算和数据融合。
内容简介
\"(1)完整展示多种深度神经网络(FNN、CNN、RNN等)在一系列分类和回归问题中的应用,有助于读者认识不同神经网络的结构特点和适用性。 (2)图文并茂地描述特定工程领域的数学建模和理论推导过程,帮助读者理解工程问题和对应仿真代码。 (3)详细阐述不同应用场景的数据生成过程,包括特征字段的选择和赋值,有助于启发工程师创建多样的数据以验证模型性能。 (4)为了展示深度学习工具解决实际问题的能力,选择了多样的应用领域。 ?简单但巧妙的“玩具”示例(如分类圆和椭圆,判断晴天和阴天)。 ?实际工程领域的专业示例(如托卡马克中断检测、地形导航、轨道测定、芭蕾舞的足尖旋转动作分类)。 ?计算机视觉、自然语言处理、时间序列数据处理等深度学习技术最常用的领域示例(如图像分类、电影分类、补全句子、股票预测)。 (5)重点介绍如何使用MATLAB机器学习工具箱进行深度学习技术实践。 ?内容新颖独特。作者拥有多年MATLAB软件工具开发经验,很多观点具有独创性。 ?突出数学建模方法。特别针对工程应用中的动力学模型进行重点讲解,理论联系实践。 ?对深度学习技术的初学者十分友好;而对于有经验的工程师,则可由高处窥见技术的框架全貌,得以引发高层次的回味与总结。 (6)适合作为大学生或研究生的教材以及工程师的参考书籍。在有限篇幅内系统精练地阐明基本理论、方法,辅以典型的理论分析、实例和相关程序,化繁为简,便于学习和认知。 \"