图像处理中的数学修炼
作者简介
左飞,技术作家、译者。他的著作涉及图像处理、编程语言和数据挖掘等多个领域,并译有《编码》等计算机领域的经典著作。曾荣获“最受读者喜爱的IT图书作译者奖”。现在的研究兴趣主要集中在图像处理、数据挖掘等领域。在CSDN上的技术博客(http://blog.csdn.net/baimafujinji)非常受欢迎,拥有过百万的访问量。之前所出图书销量均在上万册左右。
内容简介
第3章泛函分析及变分法 前面介绍的数学知识是学习图像处理的基础,同时也是大学教育中工科数学的必修内容。如果是仅仅作为数字图像处理学习入门的先修课程基本已经足够。但数字图像处理技术是一门发展非常迅速的学科,一些新方法新理论不断涌现。因此,要想把数字图像处理作为一门学问来深入研究,显然仅仅掌握前面的数学知识仍然远远不够。本章主要介绍更进一步的数学知识,这些内容主要围绕泛函分析和变法等主题展开。这些知识与前面的内容相比要更加艰深和抽象。对于本章内容的学习,侧重点应该更多地放在有关概念的理解上,而非是深究每一条定理该如何证明。当然本部分内容仍然与前面的内容紧密相连,所以读者务必在牢固掌握之前内容的基础上再进行本章的学习。 3.1勒贝格积分理论 前面介绍过积分的概念,彼时所讨论的积分首先是由黎曼严格定义的,因此之前所研究的积分通常称为黎曼积分,简称R积分。黎曼积分在数学、自然科学或者工程科学中具有非常重要的作用,正如前面所介绍的那样,诸如弧长、面积、体积、做功、通量等概念都可以借助黎曼积分来表达。然而,随着现代数学和自然科学的发展,黎曼积分的缺陷也逐渐显现。这时勒贝格积分便应运而生了。在介绍勒贝格(Lebesgue)积分的概念之前,有必要介绍点集的勒贝格测度与可测函数的基本理论,这些内容是建立勒贝格积分的必要前提。 3.1.1点集的勒贝格测度 点集的测度是区间长度概念的推广。设E为直线R上任意一个点集,用mE表示E的测度。如果E是直线上的区间(a,b),或者E=[a,b]、(a,b]、[a,b),那么自然会想到可以定义该区间的长度b-a为它的测度,即mE=b-a。如果E是直线上的开集,那么可以根据开集构造定理定义它的测度。 定义设G为直线上的有界开集,定义G的测度为它的一切构成区间的长度之和。也就是说,若 G=∪k(αk,βk) 其中,(αk,βk)是G的构成区间,则 mG=∑k(βk-αk) 如果G的构成区间只有n个,那么上式右端是有限项(n项)之和,即 mG=∑nk=1(βk-αk) 如果G的构成区间是可数多个,那么上式右端是一个无穷级数 mG=∑+∞k=1(βk-αk) 由于G是有界开集,因此必然存在开区间(a,b),使G(a,b),所以对于任何有限的n,有 ∪nk=1(αk,βk)(a,b) 从而有 ∑nk=1(βk-αk)≤b-a 令n→+∞,得 mG=∑+∞k=1(βk-αk)≤b-a 探索图像处理中的数学问题,帮助读者夯实基础、强化所学,更能帮助读者建立一条连接数学和图像处理世界的桥梁。