知识图谱:认知智能理论与实战

知识图谱:认知智能理论与实战
作者: 王文广
出版社: 电子工业
原售价: 158.00
折扣价: 110.60
折扣购买: 知识图谱:认知智能理论与实战
ISBN: 9787121432996

作者简介

王文广,浙江大学计算机科学与技术硕士,高级工程师,知识图谱与认知智能领域知名专家。 现任达观数据副总裁,专注于自然语言处理、知识图谱、图像与语音分析、认知智能、大数据和图分析等方向的技术研究、产品开发和产业应用,为金融、智能制造、医疗与生物医药、半导体等行业提供认知智能产品和技术服务。 现为上海市人工智能技术标准化委员会委员,上海市科学技术委员会评审专家、人工智能领域标准编制专家,CCF 高级会员,CIPS语言与知识计算专委会委员,CAAI深度学习专委会委员。主导或参与过百余个人工智能科学研究和产业应用项目,曾获得国际、国内多个顶尖算法竞赛奖项,申请人工智能领域国家发明专利数十项,并参与编制人工智能领域的多个国家标准、行业标准和团体标准。

内容简介

序一 《知识图谱:认知智能理论与实战》一书深入浅出地介绍了知识图谱的知识,并且指出“知识图谱是人工智能发展的阶梯”。人工智能的目的在于处理知识,有知识图谱这种形式化的知识表示方式作为阶梯,人工智能当然会取得蒸蒸日上的进步。我同意王文广的这个观点。 早在1956年于美国的达特茅斯学院召开的达特茅斯会议上,学者们就提出了“人工智能”的设想,此后人工智能迅速地发展起来。自然语言处理是人工智能的重要研究领域,在自然语言处理的研究中,学者们开始构建自动推理模型对问题进行求解,提出了语义网络、框架、脚本等一系列知识描述的理论和方法。 Sowa等人在1983年提出了“概念网络”,对知识进行描述。根据符号主义的原则,学者们将实体之间的关系局限于“拥有、导致、属于”等特殊的基本关系,并定义了一些在图谱上推理的规则,希望通过逻辑推理的方式实现人工智能。 在这些知识描述理论和方法的基础上,领域专家开始使用人工的方式编写实例数据,建立知识库,这些研究在一些受限的领域获得成功。学者们开始关注知识资源的研究。 互联网出现之后,人们在与自然和社会的交互中创造了大规模的数据,人类社会进入了大数据时代,这些大数据以文字、图片、音频、视频等不同的模态存在。怎样让计算机自动识别、阅读、分析、理解这些庞杂而海量的大数据,从中挖掘出有价值的信息,为用户提供精准的信息服务,成为下一代信息服务的核心目标之一。 2001年,Tim Berners Lee提出了语义网的概念,定义了一种描述客观世界的概念化规范,通过一套统一的元数据,对互联网的内容进行详细的语义标注,从而给互联网赋予语义,把网页互联的万维网(WWW)转化为内容互联的语义网。在语义网思想的影响下,亿万网民协同构建了“维基百科”(Wikipedia),促进了知识资源的迅速增长,使知识类型、覆盖范围和数据规模都达到了空前的水平。 1972年的文献中就出现了“知识图谱”(Knowledge Graph)这个术语。2012年5月,谷歌公司明确提出了知识图谱的概念并构建了一个大规模的知识图谱,开启了知识图谱研究之先河。从此,知识图谱便在自然语言处理的研究中普及开来,成为自然语言处理研究的一个重要内容。 知识图谱用节点(Vertex)表示语义符号,用边(Edge)表示符号与符号之间的语义关系,因而构成了一种通用的语义知识形式化描述框架。在计算机中,节点和边等符号都可以通过“符号具化”(Symbol Grounding)的方式表征物理世界和认知世界中的对象,并作为不同个体对认知世界中信息和知识进行描述和交换的桥梁。知识图谱使用统一形式的知识描述框架,便于知识的分享和学习,因而受到了自然语言处理研究者的普遍欢迎。 自谷歌构建知识图谱,并在2012年发布了包含507亿个实体的大规模知识图谱以来,不少互联网公司很快跟进,纷纷构建各自的知识图谱。例如,微软建立了Probase,百度建立了“知心”,搜狗建立了“知立方”。金融、医疗、司法、教育、出版等各个行业也纷纷建立起各自垂直领域的知识图谱,大幅提高了这些行业的智能化水平。Amazon、eBay、IBM、LinkedIn、Uber等公司相继发布了开发知识图谱的公告。与此同时,学术界也开始研究构建知识图谱的理论和方法,越来越多的关于知识图谱主题的书籍和论文被出版和发表,其中包括新技术及有关知识图谱的调查。知识图谱得到了产业界和学术界的广泛认可和关注。 知识图谱技术的发展有着深厚的历史渊源,它源于对人工智能中自然语言的语义知识表示的研究,并经历了互联网信息服务不断深化需求的洗礼,现在已经发展成为互联网知识服务的核心工具。 以语义网络(Semantic Network)为代表的知识表示的相关理论研究,对互联网智能化信息处理的应用实践,以维基百科为代表的网络协同构建知识资源的创举,这些因素共同推动了知识图谱的进一步发展。 目前,大规模的知识图谱有DBpedia、YAGO、Freebase、Wikidata、NELL、Knowledge Vault等,它们用丰富的语义表示能力和灵活的结构来描述认知世界和物理世界中的信息和知识,是知识的有效载体。 《知识图谱:认知智能理论与实战》一书系统全面地介绍了知识图谱的核心技术,既有宏观整体的技术体系介绍,也深入关键技术和算法细节;既适合作为高等学校人工智能课程的参考资料,也可以作为产业界系统开发的指南。 冯志伟 中国中文信息学会会士 中国计算机学会 NLPCC杰出贡献奖获得者 2022年2月10日 序二 随着数字化日渐成熟,知识图谱的应用正在广泛渗透到C端用户生活的方方面面,比如智能搜索。实际上,“知识图谱”概念最早由谷歌在2012年提出,它能够在反馈正确结果、给出全面总结、更深入广泛探索三大方面优化搜索效果。再比如电商智能推荐,阿里巴巴从2017年开始搭建电商认知图谱,将用户需求表达为图中的节点,并将需求点和电商领域的商品、类目、电商外部的通用领域知识等关联起来,从中挖掘客户的购物偏好和潜在的感兴趣的商品,使客户与商品和场景更好地连接。此外,还有O2O领域线上线下生活场景图谱,以美团为例,美团点评从2018年开始建立基于知识图谱的美团大脑,在客户、线下店铺和商品及不同的消费场景之间构建知识关联,从而优化客户的使用体验。 在B端,知识图谱在企业关联和企业分析方向也有很好的应用。比如对企业的法人或高管、企业之间的投资关系和关联风险进行分析,呈现在图谱上会非常直观。这种方式能够使海量信息以十分有效的方式在短时间内触达使用者。 知识图谱是企业将核心业务竞争能力和隐形数字资产融合形成新发展模式并获得持续竞争优势的关键技术,其应用领域日趋广泛,尤其在金融、医疗、制造等领域应用中发挥了极其重要的作用。王文广的这本书将知识图谱核心内容与深度学习技术融合,体系合理,理论完备,实践丰富,语言深入浅出,是研究与应用知识图谱的优秀参考书。 朱琳 微软人工智能和物联网实验室前首席执行官 微软-仪电人工智能创新院总经理 2022年3月13日 理论完备,应用丰富:知识图谱涉及庞大的理论知识体系,本书深入每个概念、理论和算法的本质,给出推导、解析和阐述,便于读者理解概念与算法背后的逻辑。在应用方面,完整涵盖知识计算、知识推理等方面内容,并系统梳理了三大行业应用场景。 内容全面,结构有序:重点介绍知识图谱的模式设计、构建、存储和应用四大板块,对应大脑学习、记忆和使用知识的模式,符合在实践中应用知识图谱的通常做法。 各章独立,主题明确:各章主题相对独立,既可以作为行业参考资料,也适合作为高校教材;读者既可以系统性地学习,也可以有选择性地学习知识图谱。 全彩印刷,图解精致:书中包含大量精心绘制的彩图,对算法和概念等进行深度剖析,便于读者直观形象地理解各知识点。